Objectives

- Understand acute coronary syndromes and how to recognize clinical manifestation.
- Understand clinical diagnostics related to acute coronary syndrome
- Understand nursing action and responsibility in caring for patients with acute coronary syndrome

Acute Coronary Syndromes

- Atherosclerosis
 - Progressive disease affecting arteries
- Coronary artery disease (CAD)
 - Atherosclerotic changes from atherosclerosis
 - Biggest contributor to cardiovascular morbidity and mortality
- Coronary heart disease (CHD)
 - Disease process of atherosclerosis and coronary artery disease
 - Other heart structures become involved
Acute Coronary Syndromes

- Any vascular disorder that narrows or occludes the coronary arteries
- Atherosclerosis is the most common cause
- Modifiable Risk factors
 - Dyslipidemia
 - Hypertension
 - Cigarette smoking
 - Diabetes mellitus
 - Obesity/sedentary lifestyle

Non Modifiable Risk Factors
- Age
- Gender
- Family history
- Race

Coronary Artery Disease – Ischemic Heart Disease Pathophysiology

- This is most commonly due to obstruction of the epicardial (on the surface) coronary arteries due to atherosclerosis
- Atherosclerotic plaque narrows lumen of artery
 - Affects medium-size arteries
 - Chronic inflammatory disorder
- Atherosclerotic plaque rupture
 - Rapidly forming coronary thrombosis
- Plaque regression is possible with change in risk factors

Acute Coronary Syndromes

Lack of oxygen causes myocardial ischemia, which manifests as chest pain

- Transient ischemia
- Unstable angina
- Sustained ischemia
- Myocardial infarction
- Myocardial inflammation and necrosis

- Myocardial ischemia
 - Local, temporary deprivation of the coronary blood supply
 - Stable angina
 - Prinzmetal angina
 - Silent ischemia
 - Angina pectoris
Acute Coronary Syndromes

- Stable angina:
 - Chest discomfort that occurs predictably and reproducibly at a certain level of exertion
 - AND
 - is relieved with rest or nitroglycerin

- Unstable angina:
 - Plaque formation with rupture and platelet activation
 - Glycoprotein IIb/IIIa inhibitors
 - Treat
 - beta blockers to decrease O2 consumption
 - Ca channel blockers to decrease after load an O2 consumption

Women and Coronary Heart Disease

Most common cause of death and disability in women in the United States

A higher proportion of silent Q wave infarctions in older women was noted in a report from the HERS trial

Acute Coronary Syndromes (ACS)

- STEMI vs. Non-STEMI vs. Unstable angina

<table>
<thead>
<tr>
<th>Symptoms 1 Month before Acute MI</th>
<th>Symptoms during Acute MI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unusual fatigue (71%)</td>
<td>Shortness of breath (56%)</td>
</tr>
<tr>
<td>Sleep disturbance (48%)</td>
<td>Weakness (55%)</td>
</tr>
<tr>
<td>Shortness of breath (42%)</td>
<td>Unusual fatigue (43%)</td>
</tr>
<tr>
<td>Irritation (39%)</td>
<td>Cold sweat (39%)</td>
</tr>
<tr>
<td>Anxiety (36%)</td>
<td>Diaphoresis (36%)</td>
</tr>
<tr>
<td>Heart racing (27%)</td>
<td>Nausea (36%)</td>
</tr>
<tr>
<td>Arms weak/heavy (25%)</td>
<td>Arms heaviness or weakness(55%)</td>
</tr>
<tr>
<td>Changes in thinking or memory (24%)</td>
<td></td>
</tr>
<tr>
<td>Vision change (23%)</td>
<td>Ache in arms (32%)</td>
</tr>
<tr>
<td>Loss of appetite (22%)</td>
<td>Heat or flushing (38%)</td>
</tr>
<tr>
<td>Hands or arms tingling (22%)</td>
<td>Indigestion (31%)</td>
</tr>
<tr>
<td>Difficulty breathing at night (16%)</td>
<td>Pain centered high in chest (31%)</td>
</tr>
<tr>
<td></td>
<td>Heart racing (23%)</td>
</tr>
</tbody>
</table>

Emergency Response

Nursing Management

- Recognize symptoms as cardiac related
- Relieve chest pain
- Recognition of complications
- Maintain a calm environment
- Provide patient and family education

Initial Assessment

- Establish **Airway, Breathing, and Circulation**
 - Obtain preliminary history if able
- Cardiac monitor attached to patient
- Code Cart brought to the bedside
- Give Oxygen at 4L as ordered
- IV access and obtain blood work (**cardiac marker enzymes**, lyes, coags, serum lipids, renal function) as ordered
- Aspirin 162 to 325 mg given as ordered
- Nitrates and morphine given as ordered (may be contraindicated)
- 12-lead ECG interpreted, repeat every 20-30 minutes
Diagnostic Cardiac Biomarkers

<table>
<thead>
<tr>
<th>Serum Biomarker</th>
<th>Time to Initial Elevation</th>
<th>Peak Elevation</th>
<th>Return to Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatine Kinase-Muscle/Brain (CK-MB) - non specific</td>
<td>4-8 hours after MI</td>
<td>15-24 hrs</td>
<td>2-3 days</td>
</tr>
<tr>
<td>Troponin – specific to cardiac muscle</td>
<td>3-6 hours after MI</td>
<td>24 hrs</td>
<td>5-10 days</td>
</tr>
<tr>
<td>Myoglobin</td>
<td>1-4 hours after MI</td>
<td>8-12 hrs</td>
<td>24 days</td>
</tr>
</tbody>
</table>

If patient comes to ED 2 hours after chest pain begins, will cardiac biomarkers be elevated?

- Echocardiogram to determine wall movement
- 12-lead ECG to identify changes in ST segment

Determine Management Based on Diagnostic Findings

- **GOAL:** Recanalization (opening) of the coronary artery – Options are:
 - Fibrinolytic Therapy with tPA
 - Percutaneous Coronary Intervention (PCI)
- **Prevent further damage**
 - Anticoagulation – heparin gtt
 - Dysrhythmia preventions
 - Beta blockers
 - Tight glucose control
 - Prevent ventricular remodeling
 - Angiotensin-converting enzyme inhibitors

Antianginal - Nitrates

- **Original medications used to control angina**
- **Mechanism of Action**
 - Affect vascular smooth muscle causing dilation in peripheral arteries, veins and coronary arteries
 - Dilation allows an increased more blood in the veins thereby reducing volume to heart (reduced preload)
 - Decreases workload of the heart
 - Coronary artery dilation increase blood flow and oxygen supply to myocardium
- **Beta Adrenergic Blockers** to slow the heart rate, reduce workload and decrease overall oxygen demand
- **Calcium Channel Blockers** to provide vasodilation, depress cardiac contractility, heart rate and conduction
Nitrates

- Relaxes smooth muscle layer of the blood vessels, which allows for dilation of the vessel and improved blood flow
- Decreases preload, afterload, and myocardial O2 consumption
- Assessment: chest pain, vitals, headache, dizziness, vertigo
- Examples:
 - Nitrates: Nitroglycerin, Isordil (isosorbide), Nitro-Bid, Imdur

Nitrates

- Rapid Acting
 - SL or spray to avoid hepatic first pass which would render it ineffective
 - Relieves symptoms of angina within 1-5 minutes
 - May cause burning under tongue
 - Open bottle expires within one year (mark date)
 - Oral nitrates should be taken on empty stomach 1 hour before or 2 hours after meal
- Long Acting
 - Maintains vasodilation and decrease cardiac workload
 - Transdermal ointment

Anticoagulant

- Used to prevent the formation and extension of a thrombus
 - Used in A-Fib
 - Prevention of deep vein thrombus
 - Post MI to prevent embolization
Anticoagulants, cont.

- **Coumadin**
 - Used for long term therapy for DVT’s and A-Fib, PE, post MI, post valve replacement
 - Monitor PT and INR
 - Watch for drug interactions (ASA, NSAIDS, beta blockers)

- **Heparin**
 - Used for acute therapy – PE, venous thrombosis, A-Fib, some stroke patients, coronary occlusion
 - Monitor PTT
 - Watch for drug interactions
 - Protamine sulfate on hand

- **Low molecular weight heparin**
 - Fragmin, Lovenox, Arixtra
 - Usually not followed with lab work as closely as the others
Thrombolytic Drugs

- Used to dissolve blood clots and reopen blood vessels
- Must be watched closely for bleeding
- EX: Activase (TPA), Retrovase, Betapace, Streptokinase
 - More effective if used in the 1st 6 hours after an MI
 - Can be given IV or directly into the coronary arteries
 - Works on fibrin in the clotting mechanism
- ReoPro
 - Works on the platelet component
 - May be given IV during a PTCA may be used in conjunction with TPA
 - Used with heparin and ASA with unstable angina or MI
- Monitor
 - PT/PTT, Hgb/Hct, CPK
 - ECG monitoring
 - Watch for bleeding

Antiplatelet Agents

- Decrease platelet aggregation and inhibit thrombus formation
- Used after an MI or stroke
 - ASA
 - Plavix
 - Persantine – vasodilator also, use with warfarin in patients with valvular disease
 - Ticlid
 - ReoPro – Cath lab only
- Monitor
 - CBC, LFT’s
 - Watch for bleeding!

Nursing Management

- Nursing priorities include:
 - Balance myocardial oxygen supply and demand
 - Medications
 - ACE Inhibitor, ARB, Statin, ASA, Beta Blocker
 - Mobility – manage O2 demand by limiting mobility
 - Bedrest with bedpan / bedside commode
 - Preventing complications
 - Dysrhythmias – monitor ST segment for changes
 - Chest Pain – morphine
Dysrhythmias

- Range from occasional “missed” or rapid beats to severe disturbances that affect the pumping ability of the heart
- Can be caused by an abnormal rate of impulse generation or abnormal impulse conduction
- Examples:
 - Tachycardia, flutter, fibrillation, bradycardia, premature ventricular contractions (PVCs), premature atrial contractions (PACs), asystole

Myocardial Infarction Complications

- Ventricular septal defect
 - Abnormal communication between right and left ventricles
 - May be present since birth (most common)
 - Rare complication of anterior wall MI
- Papillary muscle rupture
- Cardiac wall rupture
- Pericarditis
- Heart failure

Myocardial Infarction Complications

- Ventricular aneurysm
 - Noncontractile thinned left ventricular wall
 - Most often occurs with acute left anterior descending (LAD) artery occlusion
- Complications of aneurysm
 - Heart failure
 - Systemic emboli
 - Angina
 - Ventricular tachycardia
Test Your Knowledge

• The primary goal of thrombolytic therapy for ACS is
 – Troponin release in response to myocardial damage
 – Chest pain relief
 – Myocardial reperfusion to establish and maintain coronary patency
 – Ectopy prevention which is common with coronary artery reperfusion

Test Your Knowledge

• Your patient develops chest pain, SOB and coughing 3 days after STEMI. What should you suspect?
 – Pneumothorax
 – Aortic dissection
 – Pulmonary embolism
 – pericarditis

Cardiogenic Shock
Cardiogenic Shock

- Results of failure of the heart to effectively pump blood forward.
 - Occurs with dysfunctional ventricular ischemia, structural problems and dysrhythmias
 - Most common is MI with loss of >40% of functional myocardium.
 - May occur after one massive MI or several smaller ones.

CARDIOGENIC SHOCK

- “Pump failure”
- Severe left sided heart failure most die within 24"

VICIOUS CYCLE

LOW CARDIAC OUTPUT

EVEN LOWER CARDIAC OUTPUT

MYOCARDIAL ISCHEMIA

SYMPATHETIC COMPENSATION

Cardiogenic Shock - Signs & Symptoms

Unable to maintain adequate cardiac output

Signs of Low cardiac output

- Cool clammy extremities
- Poor capillary refill
- Tachycardia
- Narrow pulse pressure
- BP < 80 systolic
- Low urine output
- Rapid, Shallow respirations
- Cyanosis
- Confusion/Restlessness
Cardiogenic Shock - Assessment

- Hypotension
- Cardiac Enzymes, Troponin Elevated
- 12 lead ECG shows Acute MI
- Echocardiogram shows
 - Ventricular dysfunction
 - Aneurysm
 - Ventricular Septal Defects

Medical Management

- Goals
 - Treat underlying cause of pump failure
 - Revascularization or CABG, thrombolytics or VAD
 - Enhance the effectiveness of the pump
 - IABP, inotropic medication, vasopressors, diuretics, vasodilators after blood pressure is stabilized and dysrhythmia control.
 - Improve tissue perfusion
 - Mechanical ventilation

Cardiogenic Shock - Treatment

- Goals:
 - Increase and maintain blood pressure using vasopressors
 - Increase cardiac contractility with positive inotropes
 - Reducing preload with diuretics
 - After blood pressure is stabilized, may use vasodilating agents for preload and afterload reduction
 - Antidysrhythmias to control dysrhythmias that may decrease cardiac output
 - Rest the heart using IABP or if too much damage, may need ventricular assist device
Nursing Management

• Prevention of cardiogenic shock
 – Identify patients at risk, facilitate early reperfusion therapy and frequent assessments
• Limit myocardial oxygen consumption and enhance oxygen supply
 – Limit activities if drop in O₂ Sat occurs, monitor RR and status, cardiac dysrhythmias

CARDIOVASCULAR THERAPEUTIC MANAGEMENT

Catheter-Based Interventions

• Atherectomy
 – Directional atherectomy
 – Rotablator
 – Transluminal extraction catheter
 – Excision and removal of atherosclerotic plaque by cutting, shaving, or grinding
 • Directional atherectomy (DCA)
 • Rotational ablation catheter (Rotablator)
Fibrinolytic Therapy

• Goal: Lysis of the acute thrombus, opening the obstructed coronary artery and restoring blood flow

• Inclusion criteria
 - 12 hours or less after onset of chest pain
 - Persistent ST elevation on ECG
 - Bundle branch block with a history suggestive of AMI
 - Ischemic chest pain of 30 minutes' duration
 - Chest pain unresponsive to sublingual nitroglycerin

• Exclusion criteria
 - Patients who have stable clots from recent surgery, trauma, or stroke

Fibrinolytic Agents

• Clot specific
 - t-PA (alteplase)
 - r-PA (reteplase)
 - TNKase (tenecteplase)

• Non–clot specific
 - SK (streptokinase)
 - APSAC (anistreplase)
Percutaneous Coronary Interventions (PCI)

• Indications
 – CAD: single- or multi-vessel
 – Previous saphenous and internal mammary grafts
 – Failed fibrinolytic therapy
 – Preferred initial method of treatment for MI

• Surgical backup less often required
 – Availability of cardiac surgical services on site still recommended

• Percutaneous coronary intervention (PCI)
 – Percutaneous transluminal coronary angioplasty (PTCA)
 – Atherectomy
 – Stent implantation

Percutaneous Transluminal Coronary Angioplasty (PTCA)

• Use of balloon-tipped catheter to dilate the stenotic area
• Balloon pressure stretches the vessel wall, fractures the plaque, and enlarges the vessel

• Limitations
 – Risk of acute vessel closure
 – High frequency of restenosis

Coronary stents

• Subacute stent thrombosis
 – Goal is prevention
 – Dual antiplatelet therapy
 – IV antiplatelet agents

• In-stent restenosis
 – Increased incidence with bare metal stents

• Polymer coating impregnated with drugs
• Released slowly into endothelium at site of stent placement to inhibit cellular proliferation
Catheter-Based Interventions

• Coronary stents
 – Metal structure introduced into the coronary artery and expanded into the vessel wall at site of lesion
 • Bare metal stents

Evidence of Reperfusion

• Invasive evidence
 – Can be directly observed under fluoroscopy in the cardiac catheterization laboratory

• Noninvasive evidence
 – Cessation of chest pain
 – Reperfusion dysrhythmias, primarily ventricular rhythms
 – Elevated ST segments return to baseline
 – Early and marked peaking of creatine kinase
Acute complications after PCI

- Coronary spasm
- Coronary artery dissection
- Coronary thrombosis
- Bleeding and hematoma formation at site of vascular cannulation
- Compromised blood flow to extremity
- Retroperitoneal bleeding
- Contrast-induced renal failure
- Dysrhythmias
- Vasovagal response

Nursing Management

- Nursing priorities for patients after PCI are directed to:
 - Monitoring for recurrent angina
 - Managing the femoral or radial access site
 - Assessing for bleeding
 - Assisting with ambulation
 - Providing patient education

Nursing management

- Assessment of patient condition for clinical manifestations of potential problems
- Prevent/minimize complications of catheter procedures
 - Angina
 - Renal protection
 - Femoral site care: vascular closure systems
- Patient and family education
Discharge Planning

• Patient education
 – Medication
 • ACE Inhibitor, ARB, Statin, ASA, Beta Blocker
 – Diet
 – Activity

Cardiac Surgery

• CABG has superior long-term patency rated, surpassing those of angioplasty and stents
• Anticipated length of stay is 5-9 days
Types of grafts

- **Saphenous vein graft**
 - Excised portion of the saphenous vein proximal to the aorta

- **Internal mammary artery**
 - Remains attached to its origin subclavian artery
 - Offers long term patency

- **Radial artery or gastroepiploic artery**
 - Patency rates are not as good as others

VALVULAR HEART DISEASE

Assessment of Cardiac Valves

S_1 and S_2 are normal heart sounds

- **S_1** = closure of mitral (M_1) and tricuspid (T_1) valves at ventricular contraction (louder)
 - M_1 heard best at 5th intercostal space at MCL
 - T_1 heard best at 4th ICS at left sternal border
 - Occurs immediately after the QRS complex

- **S_2** = closure of aortic (A_2) and pulmonic (P_2) valves
 - A_2 is best heard at 2nd ICS, right of sternum
 - P_2 is best heard 2nd ICS, left of sternum
 - Occurs during diastole, during the T wave or slightly before QRS
Four Common Abnormal Situations for Abnormal Heart Sounds

Valvular Regurgitation – (insufficiency) = blood flows past closed valve
 – Mitral/Tricuspid = murmur during systole
 – Aortic/pulm = murmur during diastole

Valvular Stenosis (stiff) = resistance to pushing blood through open valve
 – Mitral/Tricuspid = murmur during diastole
 – Aortic/pulm = murmur during systole
Four Common Abnormal Situations for Abnormal Heart Sounds

- Disturbances of electrical conduction — bundle branch block that creates a split in the heart sound
 - RBB = delay in RV contraction — pulm valve closes slightly after aortic valve
 - S_2 becomes softer and produces two sounds

- Ventricular or Atrial Failure
 - increased pressure in atria / ventricles = increased flow of blood causes S_3 = gallop or S_4 = high atrial pressure
 - $S_2 > S_3 = S_1$ = gallop
 - Not always abnormal but significant with tachycardia
 - Occurs with LV (cong) HF
 - $S_2 > S_1 > S_3 = TEN$ a see

Causes of Valvular Dysfunction

- Rheumatic fever
- Infective endocarditis
- Degenerative changes in tissue
- Trauma
- Papillary muscle rupture from MI
- Systemic diseases

Mitral Valve Dysfunction

Mitral Valve Regurgitation

Signs and Symptoms

- Dyspnea
- Orthopnea
- Paroxysmal nocturnal dyspnea
- Pulmonary hypertension
- Decreased cardiac output
- Crackles
- Holosystolic murmur at apex
- S3
- Atrial fibrillation
- Signs of right heart failure
- Valve repair needed
Mitral Valve Stenosis

Signs and Symptoms
- Due to rheumatic fever
- Symptoms due to size of opening decreasing
- Dyspnea on exertion
- Progressive fatigue
- Cough
- Hemoptysis
- Right heart failure
- Elevated RV pressure
- Atrial fibrillation
- Valve repair needed

Tricuspid Valve Regurgitation (Insufficiency)

Signs & Symptoms
- “Honking” that becomes louder with inspiration
 - Watch for afib
 - Fluttering in neck
 - Shortness of breath
 - Swelling in legs, abd pain
- Caused by
 - Infection (rheumatic fever or infective endocarditis)
 - Dilated right ventricle
 - Increased pressure from lung (PAH)

Tricuspid Valve Stenosis

Caused by
- Infection (rheumatic fever)

Signs & Symptoms
- Enlarged right atrium leading to smaller right ventricle – less blood to lungs and tissues
- Fluttering in neck
- Shortness of breath

Rarely requires surgical intervention
Aortic Valve Regurgitation

Aortic Valve Regurgitation

Aortic Valve Stenosis

Aortic Valve Stenosis

Valvular Surgery

- Aortic Valve –
 - Replacement, some repairs done only for some regurgant valves

- Mitral Valve
 - Commissurotomy – mitral stenosis, fuses leaflets are excised and Ca++ deposits debrided
 - Valve Repair – mitral regurgitation, uses a ring to reduce the size of the dilated mitral valve opening
 - Preferred over replacement to avoid complications
 - Valve Replacement – complicated with risk of thromboembolic events and long term anticoagulation

- Signs and Symptoms
 - LV overload causing dilation and hypertrophy of LV
 - Fatigue
 - Dyspnea
 - Paroxysmal nocturnal dyspnea
 - Orthopnea
 - Angina
 - Widened pulse pressure
 - S3
 - Systolic murmur heard over aortic and Erb’s point
 - Sinus tachy
 - s/s of heart failure, HTN, dysrhythmias
 - Valve repair needed

- Signs and Symptoms
 - Causes and obstruction in LV to the systemic circulation during systole
 - Syncope
 - Fatigue
 - Palpitations
 - Angina
 - As valve narrows, s/s of L HF develop
 - Surgical repair needed
Types of Valves

- **Mechanical valves**
 - Caged-ball valve
 - Tilting-disk valve
 - Bi-leaflet valve

- **Biologic (tissue) valves**
 - Porcine (aortic valve) heterograft
 - Homograft

Bioprosthetic / Tissue Valves
- Carpenter-Edwards Bovine
- Porcine
- Hancock Pericardial valves
 - Short term coumadin requirements
 - Limited longevity (10-15 years)
 - Specific patient populations

Mechanical Valves
- St. Jude or ATS (Advancing the Standard)
 - Coumadin for life
 - Longevity-lasts a lifetime

Nursing Management

- Nursing priorities for patients with valvular heart disease are focused on:
 - Maintaining adequate cardiac output.
 - Optimizing fluid balance.
 - Providing patient education.
Nursing Management 48 hours Post-Op

- Major Goal is prevention of thrombus formation!!
- Hemodynamic stability
 - Hypovolemic
 - Hemorrhage
- Dysrhythmias
 - Atrial fibrillation – common at day 2-3
 - Ventricular arrhythmias – most common in early postop period
 - Factors that lead to arrhythmias include acidosis, manipulation of the heart and myocardial ischemia
- Hypothermia
- Electrolyte disturbance (especially hypokalemia and hypomagnesaemia)
- Pericardial effusion/tamponade

Emergency Care of Cardiac Tamponade

- Cardiac tamponade—an extreme emergency
 - Watch for elevated CVP, decreased cardiac output and blood pressure, jugular vein distention, muffled heart sounds, sudden cessation of chest tube drainage.
 - Call code blue and inform team of findings
 - Expect emergency sternotomy or return to OR to remove clot and fluid.

Test Your Knowledge

- Your patient with acute coronary syndrome who has undergone cardiac surgery 2 days ago develops new onset JVD, muffled heart tones, palpitations, difficulty breathing and chest pain that worsens with coughing. You notice decreases peripheral pulses.
 - Vital Signs
 - 3 hours ago
 - BP 110/60
 - HR 96
 - RR 20
 - Current
 - BP 90/50
 - HR 134
 - RR 28
 - What is happening?
 - What should you anticipate?
Test Your Knowledge

• Which of the following isoenzymes is most diagnostic of identifying MI?
 – Troponin I
 – CPK-MB
 – CPK-BB
 – Troponin K